Two-Phase Algorithms for a Novel Utility-Frequent Mining Model

نویسندگان

  • Jieh-Shan Yeh
  • Yu-Chiang Li
  • Chin-Chen Chang
چکیده

When companies seek for the combination of products which can constantly generate high profit, the association rule mining (ARM) or the utility mining will not achieve such task. ARM mines frequent itemsets without knowing the producing profit. On the other hand, the utility mining seeks high profit items but no guarantee the frequency. In this paper, we propose a novel utility-frequent mining model to identify all itemsets that can generate a user specified utility in transactions, in which the percentage of such transactions in database is not less than a minimum support threshold. A utility-frequent itemset indicates that such combination of products can constantly generate high profit. For finding all utility-frequent itemsets, there is no efficient strategy due to the nonexistence of “downward/upward closure property”. In order to tackle such challenge, we propose a bottom-up two-phase algorithm, BU-UFM, for efficiently mining utility-frequent itemsets. We also introduce a novel concept, quasi-utility-frequency, which is upward closed with respect to the lattice of all itemsets. In fact, each utility-frequent itemset is also quasi-utility-frequent. A top-down two-phase algorithm, TD-UFM, for mining utility-frequent itemsets is also presented in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Mining itemset utilities from transaction databases

The rationale behind mining frequent itemsets is that only itemsets with high frequency are of interest to users. However, the practical usefulness of frequent itemsets is limited by the significance of the discovered itemsets. A frequent itemset only reflects the statistical correlation between items, and it does not reflect the semantic significance of the items. In this paper, we propose a u...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Privacy Preserving Private Frequent Itemset Mining via Smart Splitting

Recently there has been a growing interest in designing differentially private data mining algorithms. A variety of algorithms have been proposed for mining frequent itemsets. Frequent itemset mining (FIM) is one of the most fundamental problems in data mining. It has practical importance in a wide range of application areas such as decision support, web usage mining, bioinformatics, etc. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007